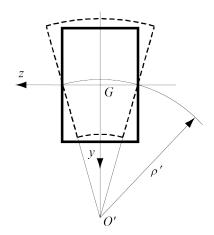
Mécanique des structures



Chapitre 6 : Flexion des poutres droites

Dr. Alain Prenleloup SGM BA3 2024-2025

Chapitre 5 : Torsion simple

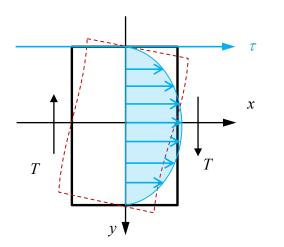
Rappel

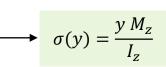
VOIR NOTE 2023 exo 2 série 5

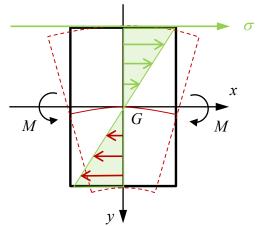
Introduction

- Les poutres sont des éléments structurels qui ont une dimension beaucoup plus longue que les deux autres
- La déflection y de la poutre est une fonction de la coordonnées selon la dimension la plus longue x
- Une poutre se déforme latéralement sous l'effet de force perpendiculaire à la poutre T(x) et de moment de flexion M(x)

$$\tau = \frac{T S'}{I_z b}$$

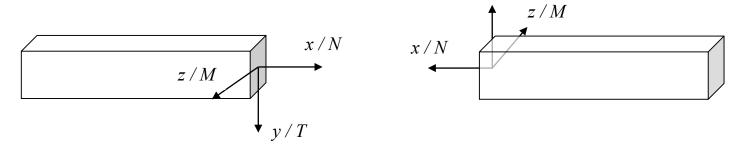




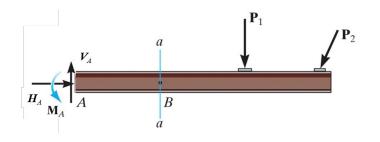


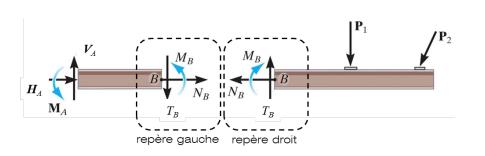
Introduction

Coupe virtuelle et convention de signes (rappel chapitre 0)



- L'axe x est pris dans la direction de la longueur de la poutre
- L'axe y est orienté vers le bas (pas le cas pour toutes les approche) et exprime le fléchissement de la poutre
- L'axe z complète le repère gauche est supporte le moment de flexion appliqué
- Les conventions de signe ne sont pas des règles absolues

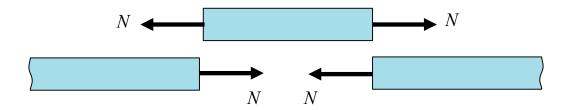




Introduction

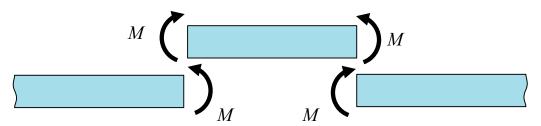
Coupe virtuelle et convention de signes

Effort normal

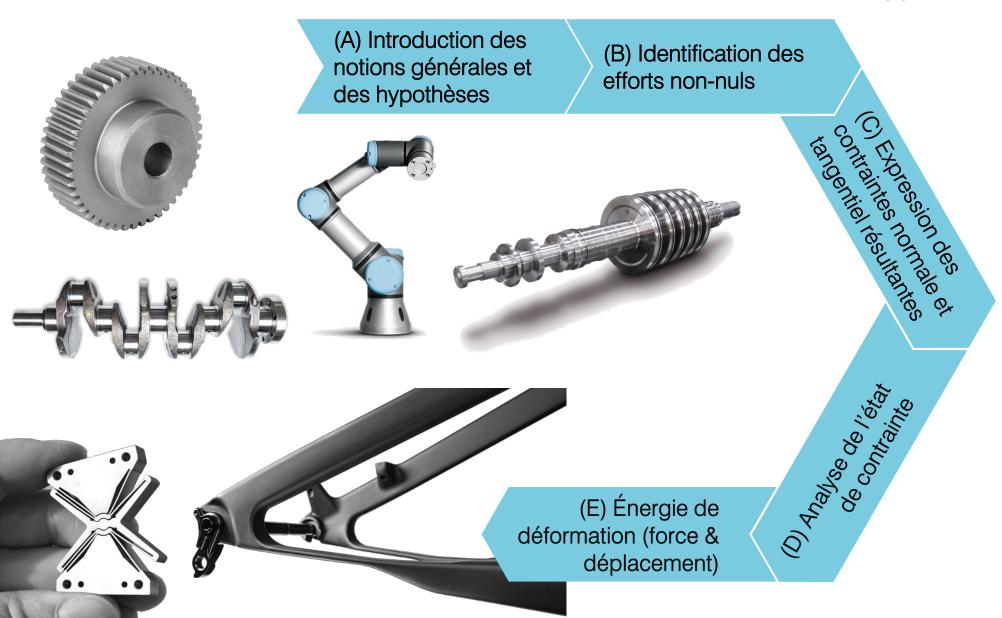


Effort tranchant

Moment de flexion



Démarche & applications

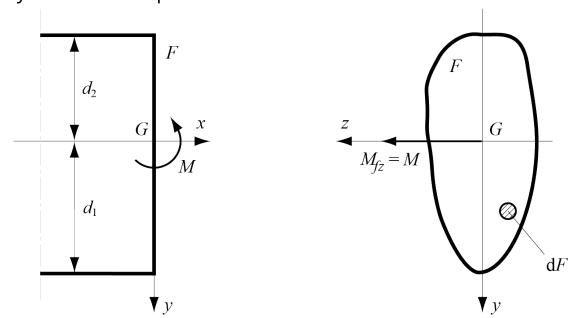


Notions générales

Si le torseur des efforts intérieurs se réduit à un moment de flexion M_f et à un effort tranchant T perpendiculaires entre eux, le solide est soumis à la *flexion simple* (\neq flexion composé)

On parle *flexion pure* lorsque

- l'effort tranchant est nul,
- le moment de flexion \mathbf{M}_f ne comporte qu'une composante $M_{fz} = M$ perpendiculaire au plan Gxy appelé plan de flexion
- la fibre moyenne de la poutre est une droite et se confond avec l'axe Gx



Contraintes normales en flexion pure

Pour déterminer les contraintes normales en flexion pure il nous faut considérer l'hypothèses de Bernoulli «une section plane avant déformation reste plane après déformation»

(a)
$$0 = \iint_F \sigma \, dF$$

(d)
$$0 = -\iint_F \tau_z y - \tau_y z \, dF$$

(b)
$$0 = \iint_F \tau_y dF$$

(e)
$$0 = -\iint_F \sigma z \, dF$$

(c)
$$0 = \iint_F \tau_z \, \mathrm{d}F$$

(f)
$$M_{fz} = \iint_F \sigma y \, \mathrm{d}F$$

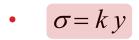
La section ne subissant aucun déplacement dans son propre plan et pas d'autre déformation que celle qui est due à la contraction latérale, les contraintes τ_y et τ_z sont nulles en tout point, de sorte que les équations (b), (c) et (d) sont satisfaites.

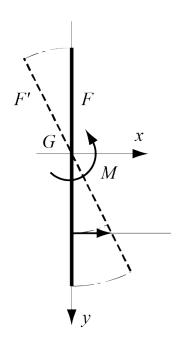
Attention : Selon une convention usuelle, il est d'usage d'utiliser un trièdre de référence gauche

Contraintes normales en flexion pure

Pour que la section F' se déduise de F par une simple rotation, il faut que le déplacement d'un point soit proportionnel à sa distance y à l'axe Gz.

D'après la loi de Hooke, il doit en être de même pour la contrainte normale







Sous cette condition, les équations (a) et (e) sont identiquement satisfaites quelle que soit la valeur k car Gy et Gz sont les axes principaux d'inertie

•
$$N = k \iint_F y dF = 0$$
 et $M_y = -k \iint_F yz dF = 0$

Contraintes normales en flexion pure

Pour que la section F' se déduise de F par une simple rotation, il faut que le déplacement d'un point soit proportionnel à sa distance y à l'axe Gz.

L'équation (f) devient alors

•
$$M_{fz} = \iint_F \sigma y \, dF = \underbrace{k \iint_F y^2 \, dF}_{I_z}$$

où l'intégrale n'est rien d'autre que le moment d'inertie $I_z = I$ de la section par rapport à l'axe principal Gz, ce qui permet d'exprimer la constante k comme

•
$$k = \frac{M}{I}$$

De sorte que la contrainte s'exprime alors comme :

•
$$\sigma = yk = \frac{yM}{I}$$

Contraintes normales en flexion pure

On introduit parfois la notion de moments de résistance à la flexion définis par les rapports

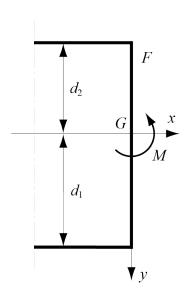
•
$$W_1 = \frac{I}{d_1}$$

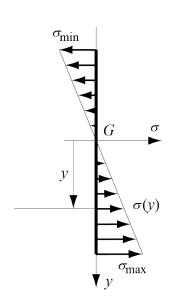
et
$$W_2 = \frac{I}{d_2}$$

On peut alors récrire les contraintes sous la forme compacte suivante

•
$$\sigma_{max} = \frac{M}{W_1}$$

et
$$\sigma_{min} = \frac{M}{W_2}$$





Contraintes normales en flexion pure

On introduit parfois la notion de moments de résistance à la flexion définis par les rapports

•
$$W_1 = \frac{I}{d_1}$$

et
$$W_2 = \frac{I}{d_2}$$

On peut alors récrire les contraintes sous la forme compacte suivante

•
$$\sigma_{max} = \frac{M}{W_1}$$

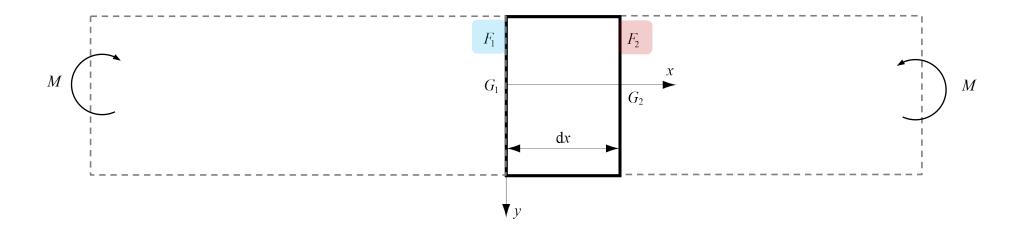
et
$$\sigma_{min} = \frac{M}{W_2}$$

Le choix d'un trièdre de référence à adoptée en statique selon laquelle <u>le moment de</u> flexion est admis positif quand il provoque une traction dans les fibres situées du côté des y positifs, ce qui implique que les axes de référence forment un trièdre à gauche.

La contrainte normale σ est ainsi positive (traction) pour y>0 et négative (compression) pour y < 0. Les valeurs extrêmes se situent sur les fibres les plus éloignées de I'axe Gz ($y = d_1$ et $y = d_2$)

Déformation en flexion pure

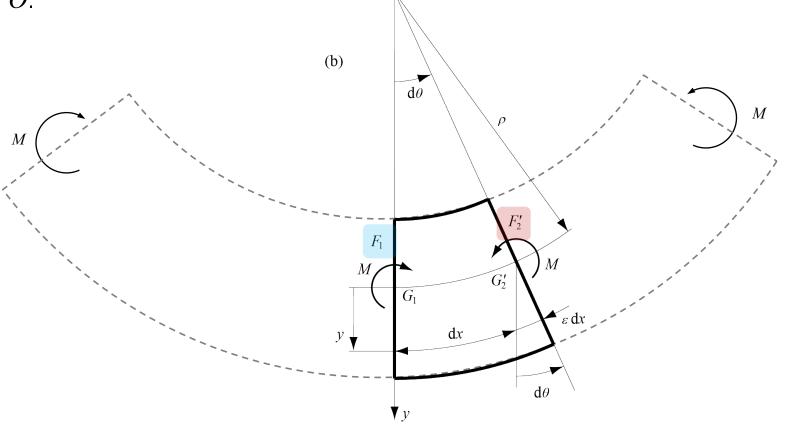
Considérons deux sections normales F_1 et F_2 de la poutre, distantes de dx. Après déformation, la section F_2 forme un angle $d\theta$ avec la face F_1 supposée fixe.



Déformation en flexion pure

Considérons deux sections normales F_1 et F_2 de la poutre, distantes de dx. Après déformation, la section F_2 forme un angle $d\theta$ avec la face F_1 supposée fixe.

La fibre moyenne G_1G_2 est ainsi devenue un arc de cercle G_1G_2 , de rayon ρ et de centre O.



Déformation en flexion pure

Comme sur la fibre moyenne la contrainte est nulle, la distance G_1G_2 reste égale à $G_1G_2=\mathrm{d}x$, de sorte que

• $dx = \rho d\theta$

Une fibre à distance y de l'axe neutre s'allonge de la quantité εdx qui peut être

explicitée sous la forme suivante (b)

•
$$\varepsilon dx = \frac{\sigma_x(y)}{E} dx = \frac{yM}{EI} dx$$

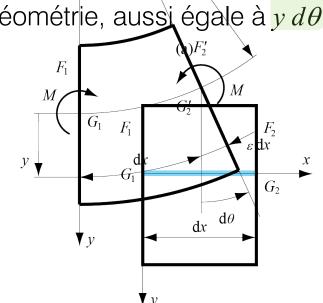
Comme cette grandeur est, par géométrie, aussi égale à $y d\theta$

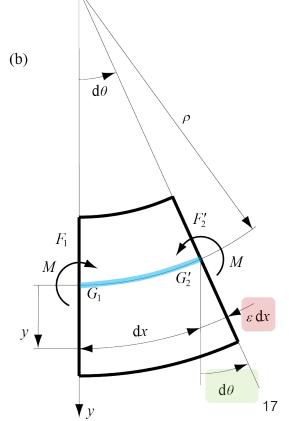
• $d\theta = \frac{M}{EI} dx$

On peut alors trouver la courbure

•
$$\frac{1}{\rho} = \frac{d\theta}{dx} = \frac{M}{EI}$$

(back)



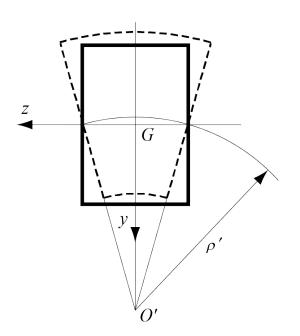


Déformation en flexion pure

Il apparait aussi une dilation latérale due aux contraintes normales

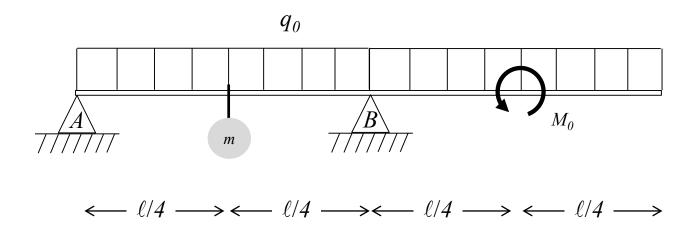
Un raisonnement semblable au précédent permet de calculer la courbure dans le plan yz

•
$$\frac{1}{\rho'} = \frac{\mu}{\rho} = \frac{\mu M}{EI}$$

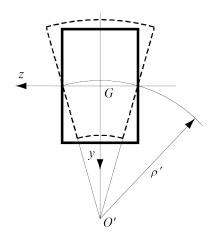


Problème 6.0

Dessiner les diagramme des effort intérieur



Mécanique des structures

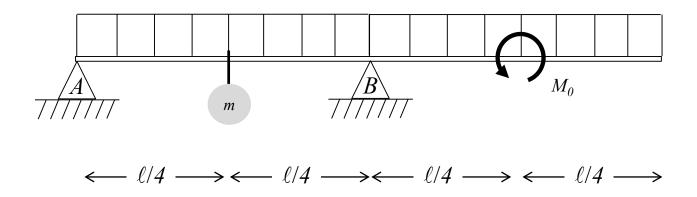


Chapitre 6 : Flexion des poutres droites

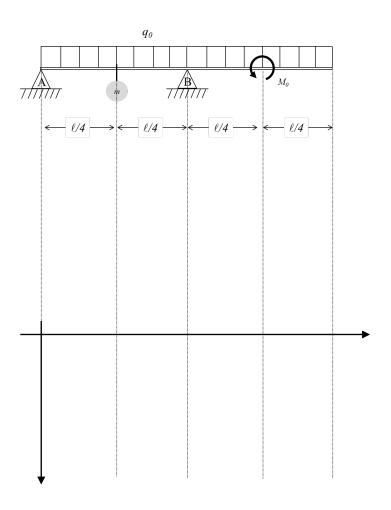
Dr. Alain Prenleloup SGM BA3 2024-2025

Problème 6.0

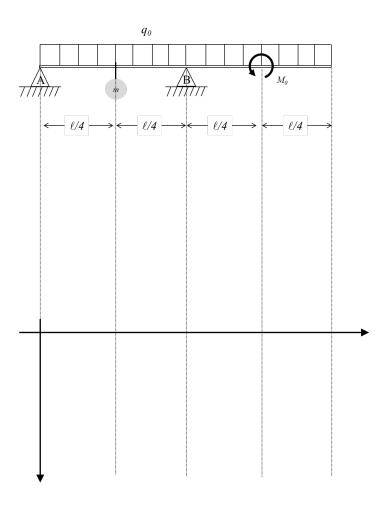
Dessiner les diagramme des effort intérieur



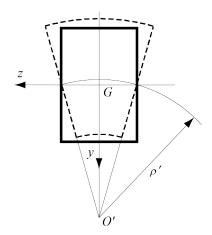
Problème 6.0



Problème 6.0



Mécanique des structures



Chapitre 6 : Flexion des poutres droites

Dr. Alain Prenleloup SGM BA3 2024-2025

Contrainte tangentielle en flexion simple

Quand le moment de flexion M varie le long de la poutre, il s'accompagne nécessairement d'un effort tranchant $T = \frac{dM}{dx}$.

L'équilibre des forces et des moments sur un élément infinitésimal d'une poutre conduit aux deux équations :

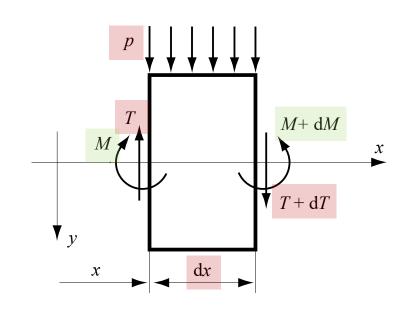
$$-T + p dx + (T + dT) = 0$$

•
$$-M - T dx + p dx \frac{dx}{2} + (M + dM) = 0$$

Ce qui permet d'exprimer (flexion simple ≠ pure)

•
$$p = -\frac{dT}{dx}$$

•
$$T = \frac{dM}{dx}$$



p dénote la charge répartie, uniforme ou non, sur la poutre

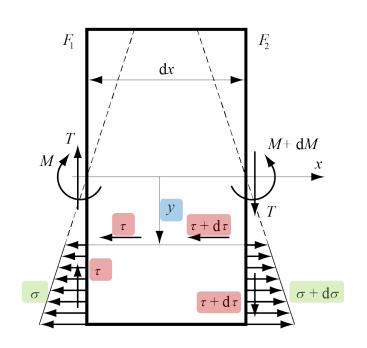
Contrainte tangentielle en flexion simple

L'effort tranchant provoque des contraintes tangentielles dans la section (mais n'a que peu d'influence sur les contraintes normales)

Afin d'établir la distribution des contraintes tangentielles en flexion (simple) considérons à nouveau les deux section voisines F_1 et F_2 .

À une distance y de l'axe neutre les contraintes normales sur ces faces sont respectivement σ et $\sigma + d\sigma$

Les contraintes tangentes associées τ et $\tau + d\tau$ apparaissent simultanément sur les faces verticales et la face horizontale de largeur b (voir slide suivante)



Contrainte tangentielle en flexion simple

L'équilibre des force selon l'axe Gx de l'élément de poutre de section F' et de longueur dx

•
$$-\iint_{F'} \sigma \, dF' + \iint_{F'} (\sigma + d\sigma) \, dF' - b \, dx \left(\tau + \frac{d\tau}{2}\right) = 0$$

En négligeant l'infiniment petit du second ordre $dx d\tau$

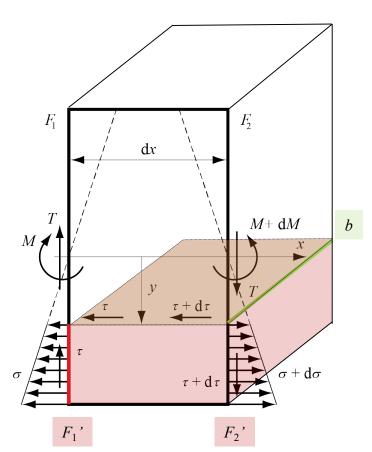
•
$$b \tau dx = \iint_{F_{\tau}} d\sigma dF'$$

La dérivation de $\sigma = \frac{yM}{I}$ en tenant compte de l'invariabilité de y (dy = 0)

•
$$d\sigma = \frac{\partial \sigma}{\partial x} dx + \frac{\partial \sigma}{\partial y} dy = \frac{\partial \sigma}{\partial x} dx = \frac{y}{I} \frac{dM}{dx} dx$$

En introduisant
$$T = \frac{dM}{dx}$$

•
$$d\sigma = \frac{y}{I}Tdx$$



Contrainte tangentielle en flexion simple

L'insertion de cette dernière égalité dans l'équation liant la contrainte normale avec la contrainte de cisaillement permet d'écrire

•
$$b \tau dx = \iint_{F'} d\sigma dF' = \iint_{F'} \frac{y}{I} T dx dF'$$

Et donc

•
$$\tau = \frac{T}{Ib} \iint_{F'} y \ dF'$$

On définit alors le moment statique de la section partielle

•
$$S' = \iint_{F} y \ dF'$$

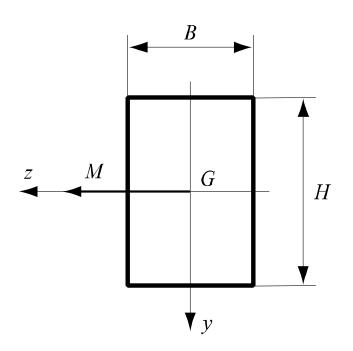
Et la contrainte tangentielle devient

•
$$\tau = \frac{TS}{Ib}$$

Problème 6.1 et 6.2

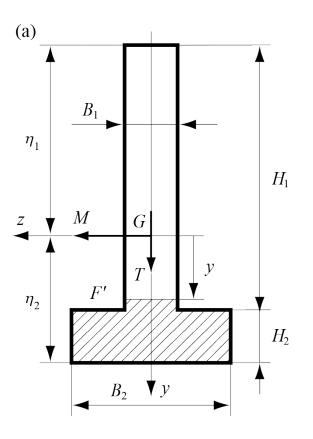
Problème 6.1 : Calculer les contraintes maximale et minimale dans la section d'une poutre rectangulaire de hauteur H=6 cm et de largeur B=4 cm en acier soumise à un moment de flexion M=5000 Nm (flexion pure). Déterminer ensuite le rayon de courbure r.

Problème 6.2 : Calculer les contraintes tangentielles τ dans une section rectangulaire de hauteur H et de largeur B d'une poutre soumise à la <u>flexion simple</u>.

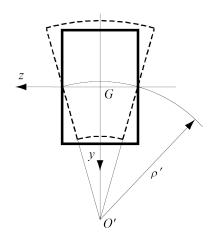


Problème 6.3

Evaluer les contraintes normales σ et tangentielles τ dans la section en forme de T inversé d'une poutre droite soumise à un moment de flexion M et à un effort tranchant T



Mécanique des structures



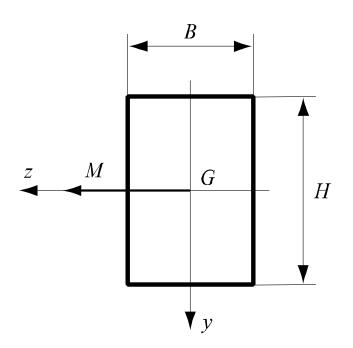
Chapitre 6 : Flexion des poutres droites

Dr. Alain Prenleloup SGM BA3 2024-2025

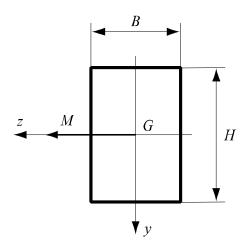
Problème 6.1 et 6.2

Problème 6.1 : Calculer les contraintes maximale et minimale dans la section d'une poutre rectangulaire de hauteur H=6 cm et de largeur B=4 cm en acier soumise à un moment de flexion M=5000 Nm. Déterminer ensuite le rayon de courbure r.

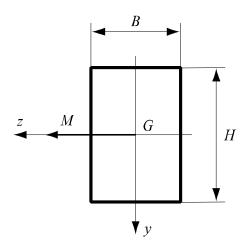
Problème 6.2 : Calculer les contraintes tangentielles τ dans une section rectangulaire de hauteur H et de largeur B d'une poutre soumise à la flexion simple.



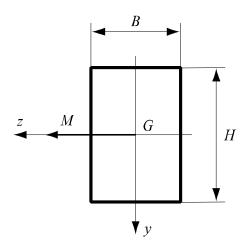
Problème 6.1 et 6.2



Problème 6.1 et 6.2

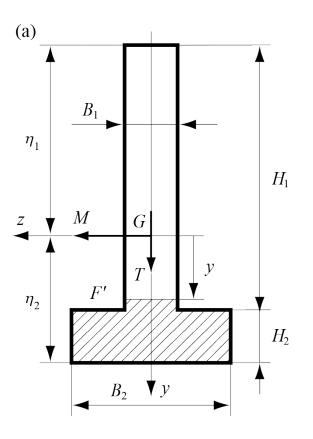


Problème 6.1 et 6.2

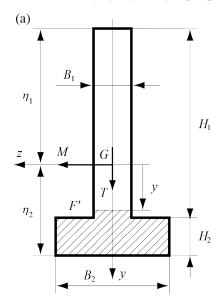


Problème 6.3

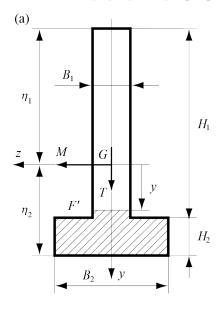
Evaluer les contraintes normales σ et tangentielles τ dans la section en forme de T inversé d'une poutre droite soumise à un moment de flexion M et à un effort tranchant T



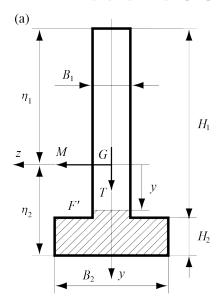
Problème 6.3



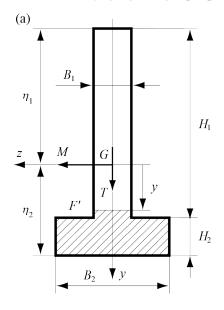
Problème 6.3



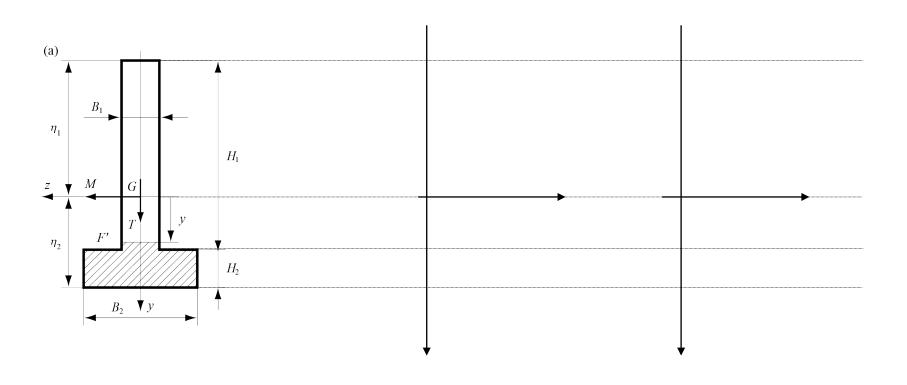
Problème 6.3



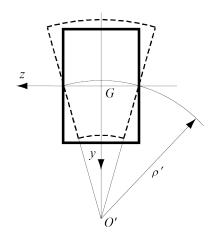
Problème 6.3



Problème 6.3



Mécanique des structures



Chapitre 6 : Flexion des poutres droites

Dr. Alain Prenleloup SGM BA3 2024-2025

Analyse de l'état de contrainte

Les contraintes normales et tangentielles en un point $M_{\theta}(y, z)$ de la section d'une poutre soumise à la flexion <u>simple</u>, ont pour valeur

Sur la face F_x

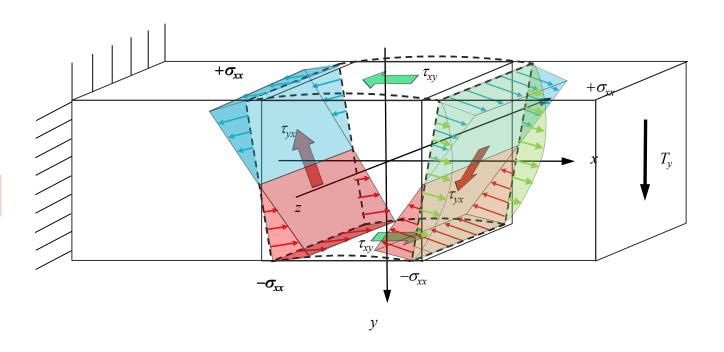
•
$$\sigma_{\chi} = \frac{y M}{I}$$

•
$$\tau_{\chi} = \frac{T \, S'}{I \, b}$$

Sur la face F_{v}

•
$$\sigma_{v} = 0$$

•
$$\tau_y = -\tau_x$$



Analyse de l'état de contrainte

Les contraintes normales et tangentielles en un point $M_{\theta}(y, z)$ de la section d'une poutre soumise à la flexion <u>simple</u>, ont pour valeur

Sur la face F_x

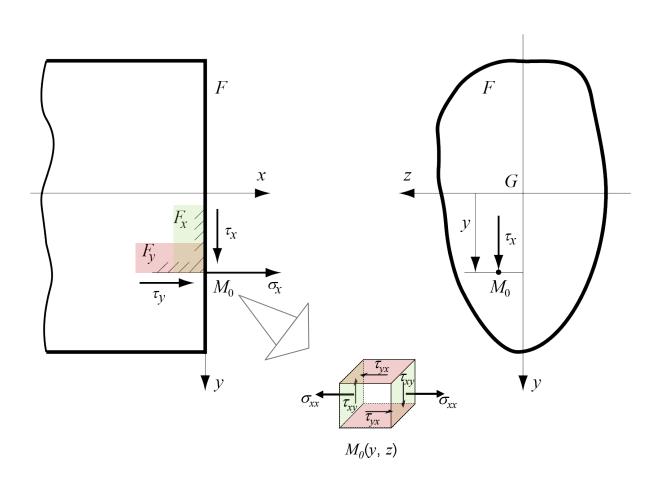
•
$$\sigma_{\chi} = \frac{y M}{I}$$

•
$$au_{\chi} = \frac{T \, S'}{I \, b}$$

Sur la face F_y

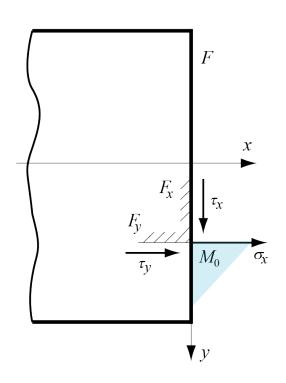
•
$$\sigma_{\rm v}=0$$

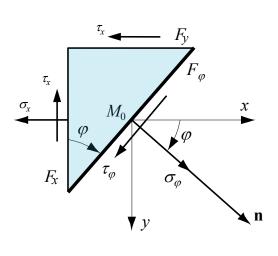
•
$$\tau_{v} = -\tau_{x}$$



Analyse de l'état de contrainte

Afin de déterminer l'état de contrainte en flexion simple, choisissons comme aux chapitres précédents une section oblique F_{φ} , perpendiculaire au plan principal M_0xy et tournant autour de l'axe M_0z , sa normale \mathbf{n} formant un angle φ avec l'axe M_0x .





- $F_{\varphi} \sigma_{\varphi} F_{\chi} \sigma_{\chi} \cos \varphi F_{\chi} \tau_{\chi} \sin \varphi F_{\chi} \tau_{\chi} \cos \varphi = 0$
- $F_{\varphi} \tau_{\varphi} + F_{\chi} \sigma_{\chi} \sin \varphi F_{\chi} \tau_{\chi} \cos \varphi F_{\chi} \tau_{\chi} \sin \varphi = 0$

Analyse de l'état de contrainte

Les contraintes σ_{φ} et τ_{φ} qui, d'après la définition des sections $F_x=F_{\varphi}$ cos φ et $F_v=F_{\varphi}\sin\varphi$, peuvent être explicitées sous la forme

- $\sigma_{\varphi} = \sigma_{\chi} \cos^2 \varphi + 2\tau_{\chi} \cos \varphi \sin \varphi$
- $\tau_{\varphi} = -\sigma_{\chi}\cos\varphi\sin\varphi + \tau_{\chi}(\cos^2\varphi \sin^2\varphi)$

En introduisant l'angle 2φ , puis l'angle de phase φ_0

•
$$\sigma_{\varphi} = \frac{\sigma_{\chi}}{2}(1 + \cos 2\varphi) + \tau_{\chi} \sin 2\varphi = \frac{\sigma_{\chi}}{2} + R\cos 2(\varphi - \varphi_0)$$

•
$$\tau_{\varphi} = -\frac{\sigma_{\chi}}{2}\sin 2\varphi + \tau_{\chi}\cos 2\varphi = -R\sin 2(\varphi - \varphi_0)$$

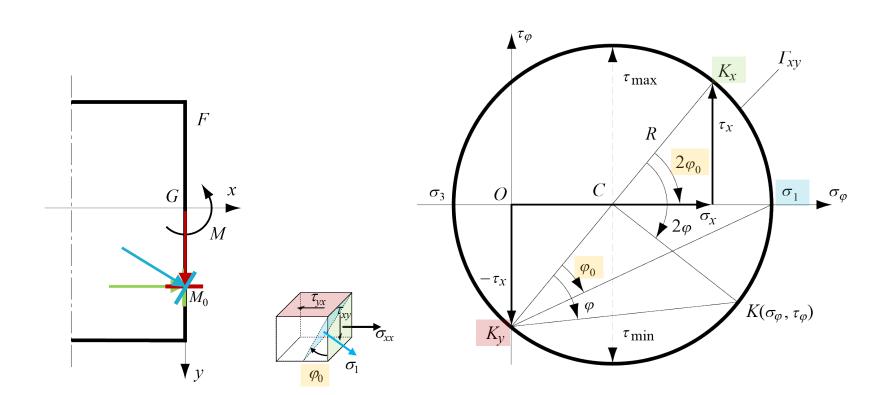
Avec

•
$$R = \sqrt{\left(\frac{\sigma_x}{2}\right)^2 + \tau_x^2}$$
 et $\tan 2\varphi_0 = \frac{2\tau_x}{\sigma_x}$

Analyse de l'état de contrainte

Le cercle de Mohr fondamental Γ_{xy} , défini par les points $K_x(\sigma_x, \tau_x)$ et $K_y(0, -\tau_x)$, est décalé vers la droite par rapport à l'axe des τ_{φ} si la contrainte τ_x est positive (point M_0 du côté des y positifs) et vers la gauche dans le cas contraire.

Il est possible de déterminer la direction des axes principaux, ainsi que les contraintes principales et la contrainte tangentielle maximum en M_0



Analyse de l'état de contrainte

Le cercle de Mohr fondamental Γ_{xy} , défini par les points $K_x(\sigma_x, \tau_x)$ et $K_y(0, -\tau_x)$, est décalé vers la droite par rapport à l'axe des τ_{φ} si la contrainte τ_x est positive (point M_0 du côté des y positifs) et vers la gauche dans le cas contraire.

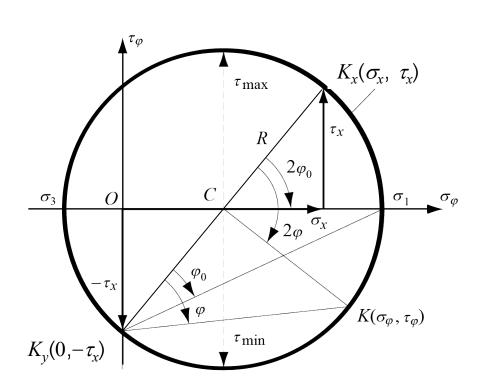
Il est possible de déterminer la direction des axes principaux, ainsi que les contraintes principales et la contrainte tangentielle maximum en M_0

•
$$\sigma_1 = \frac{\sigma_x}{2} + \sqrt{\left(\frac{\sigma_x}{2}\right)^2 + \tau_x^2}$$

•
$$\sigma_2 = 0$$

•
$$\sigma_3 = \frac{\sigma_x}{2} - \sqrt{\left(\frac{\sigma_x}{2}\right)^2 + \tau_x^2}$$

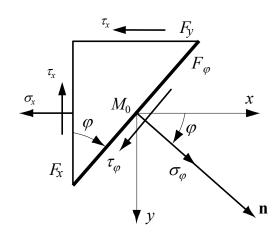
•
$$\tau_{max} = \sqrt{\left(\frac{\sigma_x}{2}\right)^2 + \tau_x^2}$$



Analyse de l'état de contrainte

Matrice des contraintes en flexion simple

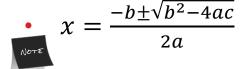
$$\bullet \quad \boldsymbol{\sigma} = \begin{pmatrix} \sigma_{\chi} & \tau_{\chi y} & 0 \\ \tau_{\chi y} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$



Valeurs propres

•
$$\det(\boldsymbol{\sigma} - \sigma_{p} \mathbf{I}) = \det\begin{pmatrix} \sigma_{x} - \sigma_{p} & \tau_{xy} & 0 \\ \tau_{xy} & -\sigma_{p} & 0 \\ 0 & 0 & -\sigma_{p} \end{pmatrix} = 0$$
$$\sigma_{p}^{2}(\sigma_{x} - \sigma_{p}) + \sigma_{p} \tau_{xy}^{2} = \sigma_{p}(-\sigma_{p}^{2} + \sigma_{x}\sigma_{p} + \tau_{xy}^{2}) = 0$$

Racine d'un polynôme d'ordre 2 : $ax^2 + bx + c = 0$



Analyse de l'état de contrainte

Les valeurs propres sont les racines de l'équation

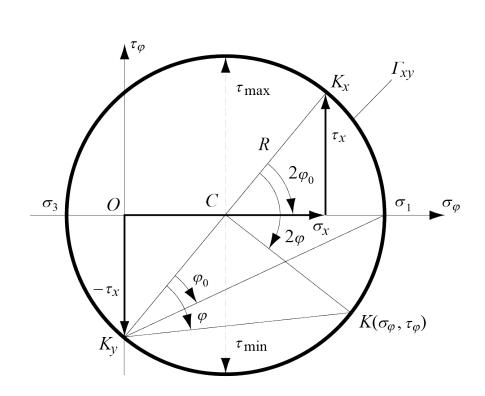
•
$$\sigma_p(-\sigma_p^2 + \sigma_x\sigma_p + \tau_{xy}^2) = 0$$

D'où l'on peut extraire les contraintes principales $\sigma_p = 1$, 2 et 3

•
$$\sigma_1 = \frac{\sigma_x}{2} + \sqrt{\left(\frac{\sigma_x}{2}\right)^2 + \tau_x^2}$$

•
$$\sigma_2 = 0$$

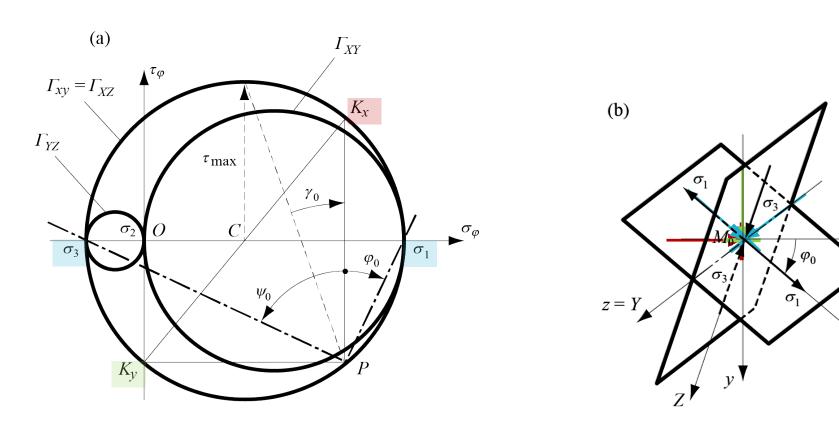
•
$$\sigma_3 = \frac{\sigma_x}{2} - \sqrt{\left(\frac{\sigma_x}{2}\right)^2 + \tau_x^2}$$



Analyse de l'état de contrainte

Dans la section F, l'état de contrainte est identique pour tout point M_0 situé sur une parallèle à l'axe neutre Gz puisqu'en flexion simple, les contraintes normale σ_x et tangentielle τ_x ne dépendent que de l'abscisse y

Flexion simple: (a) cercles de Mohr; (b) axes et plans principaux



Lignes isostatiques

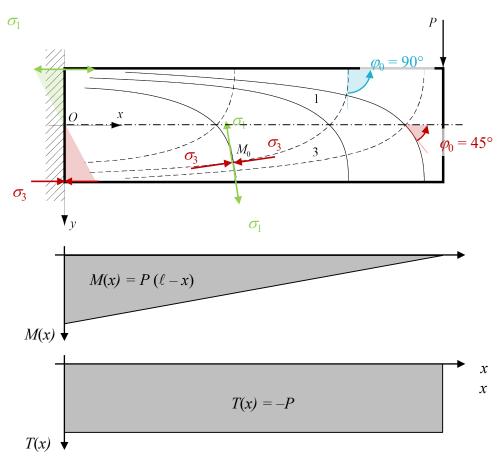
Rappelons que les **lignes isostatiques** – ou plus simplement les isostatiques – sont les trajectoires des contraintes principales. En flexion simple, ce sont des courbes planes identiques pour tous les plans à z constant, de sorte qu'il suffit de les tracer dans le plan Oxy

- $\varphi_0 = 45^{\circ}$ cisaillement max en y = 0 pour tous x
- $\varphi_0 = 90^\circ$ cisaillement nul en $y = \pm R$ pour tous x

•
$$\sigma_{\chi}(x,y) = \frac{y M(x)}{I_Z} = \frac{y M(x)}{\iint_F y^2 dF}$$

$$\tau_{\chi}(x,y) = \frac{T(x) S'(y)}{I_{Z} b(y)} = \frac{T \iint_{F'} y \ dF'}{I_{Z} b(y)}$$

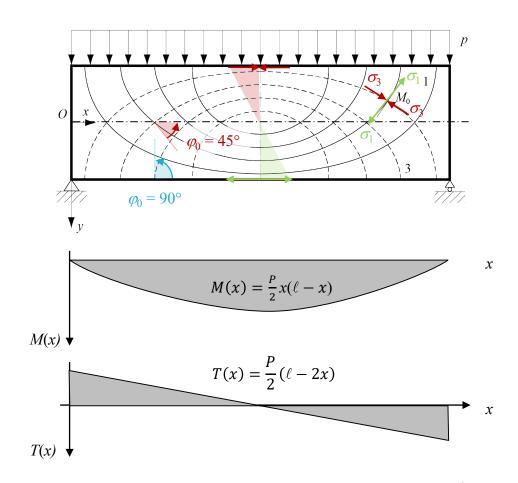
•
$$\sigma_{1,3} = \frac{\sigma_x}{2} \pm \sqrt{\left(\frac{\sigma_x}{2}\right)^2 + \tau_x^2}$$



Lignes isostatiques

Rappelons que les **lignes isostatiques** – ou plus simplement les isostatiques – sont les trajectoires des contraintes principales. En flexion simple, ce sont des courbes planes identiques pour tous les plans à z constant, de sorte qu'il suffit de les tracer dans le plan Oxy

- $\varphi_0 = 45^\circ$ cisaillement max en x = 0 et ℓ pour y = 0
- $\varphi_0 = 90^\circ$ cisaillement nul en x = 0en x = 0 et ℓ pour $y = \pm R$
- $\sigma_{\chi}(x,y) = \frac{y M(x)}{I_Z} = \frac{y M(x)}{\iint_F y^2 dF}$
- $\tau_{\chi}(x,y) = \frac{T(x) S'(y)}{I_{z} b(y)} = \frac{T(x) \iint_{F'} y \ dF'}{I_{z} b(y)}$
- $\sigma_{1,3} = \frac{\sigma_x}{2} \pm \sqrt{\left(\frac{\sigma_x}{2}\right)^2 + \tau_x^2}$



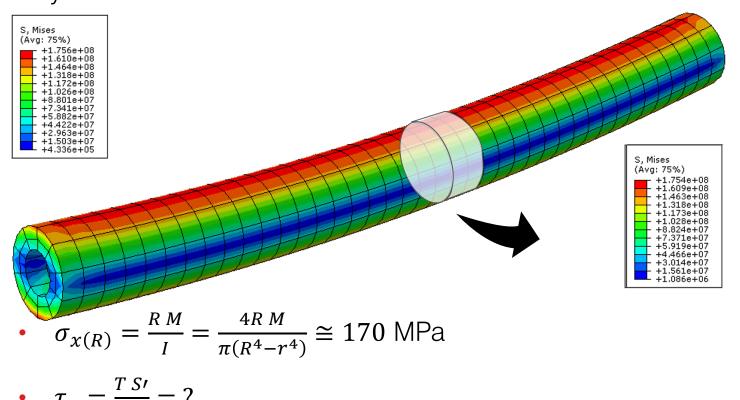
Simulation

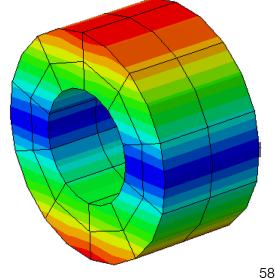
Module élastique du fémur : 10-20 GPa

Moment de force : $1000 \text{ Nm} \equiv 100 \text{ kg à 1 m}$

Résistance de l'os : 100 N/mm² ou 100 MPa

Rayon : R = 20 mm et r = 10 mm





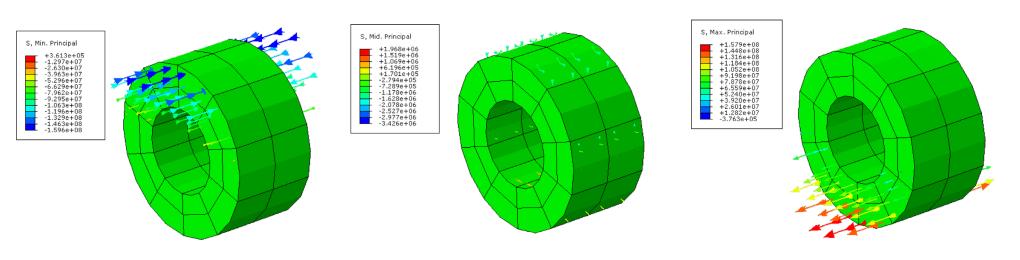
Simulation

Module élastique du fémur : 10-20 GPa

Moment de force : $1000 \text{ Nm} \equiv 100 \text{ kg à 1 m}$

Résistance de l'os : 100 N/mm² ou 100 MPa

Rayon : R = 20 mm et r = 10 mm



•
$$\sigma_{\chi(R)} \frac{R M}{I} = \frac{4R M}{\pi (R^4 - r^4)} \cong 170 \text{ MPa}$$

•
$$au_{\chi} = \frac{T S'}{I h} = \frac{T}{I}$$

Énergie de déformation due au moment de flexion

Sous l'effet du moment de flexion M, les faces d'un élément de poutre de longueur dx subissent une rotation relative $d\theta$. L'énergie de déformation a ainsi pour valeur

•
$$dU = \frac{1}{2}M d\theta$$

En vertu de $dx = \rho d\theta$ et $1/\rho = M/EI$ (rappel)

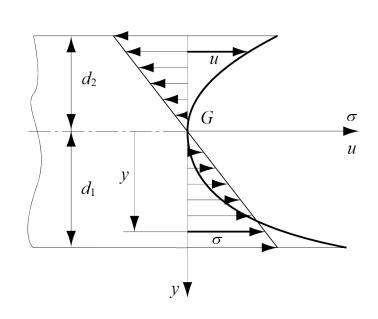
•
$$dU = \frac{M^2}{2EI} dx$$

•
$$U = \int_0^\ell \frac{M_f^2}{2EI} dx$$

La densité d'énergie *u* en traction – compression

•
$$u = \frac{\sigma \varepsilon}{2} = \frac{\sigma^2}{2E} = \frac{M^2}{2EI^2} y^2$$

$$\int \sigma = \frac{y M}{I}$$



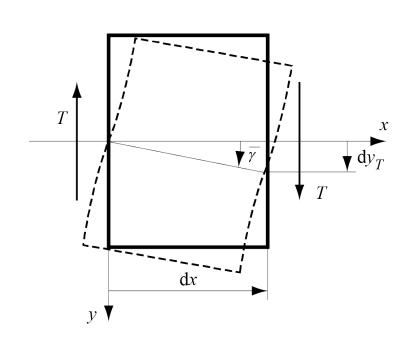
Énergie de déformation due à l'effort tranchant

Du fait que la contrainte tangentielle τ et l'angle de glissement $\gamma = \tau / G$ varient dans la section, les fibres subissent ainsi des déplacements transversaux différents et la section ne peut rester plane

L'hypothèse de **Bernoulli n'est plus satisfaite**, il y a un gauchissement des sections normales \rightarrow nous nous bornerons à affirmer que l'erreur commise est en général très faible et qu'elle **peut être négligée en pratique**.

Le déplacement transversal relatif des deux sections d'un élément de poutre de longueur dx, provoqué par l'effort tranchant T, peut être caractérisé par un angle de glissement global $\bar{\gamma}$

• $dy_T = \bar{\gamma} dx$



Énergie de déformation due à l'effort tranchant

L'énergie due au déplacement d'ensemble a pour valeur (1/2 force x déplacement)

•
$$dU = \frac{1}{2}T \, dy_T = \frac{1}{2}T\overline{\gamma} \, dx$$

Le glissement global peut être rapporté à la contrainte tangentielle moyenne

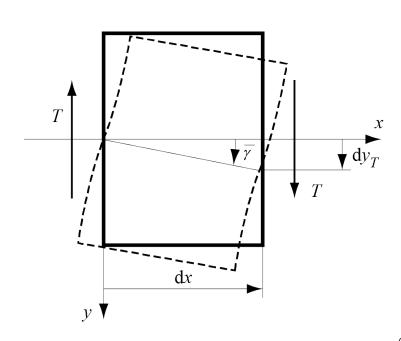
•
$$\bar{\gamma} = \eta \frac{\tau_{moy}}{G} = \eta \frac{T}{GF}$$

où η dénote un nombre pur différent de l'unité

L'énergie de déformation devient

•
$$dU = \eta \frac{T^2}{2GF} dx$$

•
$$U = \int dU = \int_0^\ell \eta \frac{T^2}{2GF} dx$$



Énergie de déformation due à l'effort tranchant

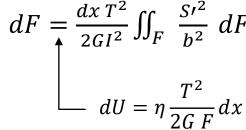
Parallèlement, on peut aussi exprimer l'énergie de déformation due à des contraintes tangentielles comme l'intégration de la densité d'énergie u (de cisaillement) dans l'élément de volume $dV = dx \ dF$

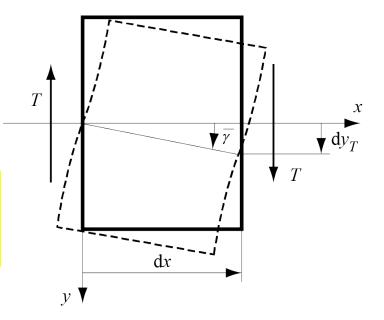
•
$$dU = \iint_F u \, dx \, dF = dx \iint_F \frac{\tau^2}{2G} \, dF = \frac{dx}{2G} \iint_F \left(\frac{T \, S'}{I \, b}\right)^2 \, dF = \frac{dx \, T^2}{2GI^2} \iint_F \frac{S'^2}{b^2} \, dF$$

En égalant ces deux expressions de l'énergie, on trouve la valeur du coefficient η , appelé **coefficient de forme** (fonction de la géométrie uniquement)

$$\bullet \quad \eta = \frac{F}{I^2} \iint_F \frac{S'^2}{b^2} dF$$

En flexion simple, la déformation due à l'effort tranchant est en général beaucoup plus faible que celle provoquée par le moment. Il en est de même de l'énergie de déformation.





Problème 6.4

Calculer le coefficient de forme d'une section rectangulaire de largeur L et de hauteur H.

•
$$\eta = \frac{F}{I^2} \iint_F \frac{S'^2}{h^2} dF$$

Avec

•
$$F = BH$$

•
$$I = \frac{BH^3}{12}$$

•
$$b = B$$

•
$$S' = \iint_{F'} y \ dF' = \int_{y=y}^{H/2} y \ dy \int_{z=-B/2}^{B/2} dz = \frac{BH^2}{8} \left[1 - \left(\frac{y}{H/2} \right)^2 \right]$$

 $\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ &$

Ainsi on trouve pour un rectangle

•
$$\eta = \frac{144 \, BH}{B^2 H^6} \int_{y=-H/2}^{H/2} \int_{z=-B/2}^{B/2} \frac{S'^2}{B^2} dy dz = \frac{9}{4H} \int_{y=-H/2}^{H/2} \left[1 - \left(\frac{y}{H/2} \right)^2 \right]^2 dy = 6/5$$

De manière similaire le coefficient de forme d'une section circulaire vaut $\eta = 10/9$

Annexe III: Moment d'une aire plane

Moment du second ordre

Forme de l'aire	I_p	I_x	I_y	I_{xy}
	m ⁴	m ⁴	m ⁴	m ⁴
(a) Carré de côté D	$\frac{D^4}{6}$	$\frac{D^4}{12}$	$\frac{D^4}{12}$	0
(b) Rectangle de largeur B et hauteur H	$\frac{BH}{12}\left(B^2+h^2\right)$	$\frac{BH^3}{12}$	$\frac{HB^3}{12}$	0
(c) Triangle isocèle de base B et hauteur H	$\frac{BH}{144}\big(3B^2+4h^2\big)$	$\frac{BH^3}{36}$	$\frac{HB^3}{48}$	0
(d) Losange de diamètres B et H	$\frac{BH}{48}\big(B^2+h^2\big)$	$\frac{BH^3}{48}$	$\frac{HB^3}{48}$	0
(e) Cercle de diamètre D	$\frac{\pi D^4}{32}$	$\frac{\pi D^4}{64}$	$\frac{\pi D^4}{64}$	0
(f) Ellipse d'axes B et H	$\frac{\pi BH}{64} \left(B^2 + h^2 \right)$	$\frac{\pi B H^3}{64}$	$\frac{\pi H B^3}{64}$	0

